Package nemo

The National Electricity Market Optimiser (NEMO).

Expand source code
# Copyright (C) 2017 Ben Elliston
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.

"""The National Electricity Market Optimiser (NEMO)."""

import nemo.nem  # noqa: F401
from nemo.context import Context
from nemo.sim import run
from nemo.utils import plot

__all__ = ['Context', 'run', 'plot']

Sub-modules

nemo.configfile

Configuration file processing (eg, filenames).

nemo.context

Implementation of the Context class …

nemo.costs

Generation technology costs.

nemo.generators

Simulated electricity generators for the NEMO framework.

nemo.nem

A National Electricity Market (NEM) simulation.

nemo.penalties

Penalty functions for the optimisation.

nemo.polygons

Support code for the 43 polygons of the AEMO study.

nemo.regions

Market regions consisting of one or more polygons.

nemo.scenarios

Supply side scenarios.

nemo.sim

The core of the simulation engine.

nemo.storage

Storage classes …

nemo.types

Useful internal types.

nemo.utils

Utility functions (eg, plotting).

Functions

def plot(context, spills=False, filename=None, showlegend=True, xlim=None)

Produce a pretty plot of supply and demand.

Expand source code
def plot(context, spills=False, filename=None, showlegend=True, xlim=None):
    """Produce a pretty plot of supply and demand."""
    if xlim is None:
        starttime = context.demand.index[0]
        ninety_days = 24 * 90
        if context.timesteps() > ninety_days:
            endtime = starttime + timedelta(days=90)
        else:
            endtime = context.demand.index[-1]
        timerange = (starttime, endtime)
    else:
        timerange = xlim

    _figure(context, spills, showlegend, timerange)
    if not filename:
        plt.show()
    else:
        plt.savefig(filename)
def run(context, starthour=None, endhour=None)

Run the simulation.

Expand source code
def run(context, starthour=None, endhour=None):
    """Run the simulation."""
    if not isinstance(context.regions, list):
        raise TypeError

    if starthour is None:
        starthour = context.demand.index.min()
    if endhour is None:
        endhour = context.demand.index.max()
    date_range = pd.date_range(starthour, endhour, freq='H')

    _sim(context, date_range)

    # Calculate unserved energy.
    agg_demand = context.demand.sum(axis=1)
    agg_generation = context.generation.sum(axis=1)
    unserved = agg_demand - agg_generation
    # Ignore unserved events very close to 0 (rounding errors)
    context.unserved = unserved[~np.isclose(unserved, 0)]

Classes

class Context

All simulation state is kept in a Context object.

Initialise a default context.

Expand source code
class Context():
    """All simulation state is kept in a Context object."""

    # pylint: disable=too-many-instance-attributes
    def __init__(self):
        """Initialise a default context."""
        self.verbose = False
        self.regions = regions.All
        self.startdate = startdate
        # Number of timesteps is determined by the number of demand rows.
        self.hours = len(hourly_regional_demand)

        self.relstd = 0.002  # 0.002% unserved energy
        self.generators = [generators.CCGT(polygons.WILDCARD, 20000),
                           generators.OCGT(polygons.WILDCARD, 20000)]
        self.storages = None
        self.demand = hourly_demand.copy()
        self.spill = pd.DataFrame()
        self.generation = pd.DataFrame()
        self.unserved = pd.DataFrame()
        # System non-synchronous penetration limit
        self.nsp_limit = float(configfile.get('limits', 'nonsync-penetration'))
        self.costs = costs.NullCosts()

    def years(self):
        """Return the number of years from the number of simulation hours."""
        return self.hours / (365 * 24)

    def timesteps(self):
        """Return the number of timesteps."""
        return len(self.demand)

    def total_demand(self):
        """Return the total demand from the data frame."""
        return self.demand.values.sum()

    def unserved_energy(self):
        """Return the total unserved energy."""
        return self.unserved.values.sum()

    def surplus_energy(self):
        """Return total surplus energy."""
        return self.spill.values.sum()

    def unserved_percent(self):
        """Return the total unserved energy as a percentage of total demand."""
        # We can't catch ZeroDivision because numpy emits a warning
        # (which we would rather not suppress).
        if self.total_demand() == 0:
            return np.nan
        return self.unserved_energy() / self.total_demand() * 100

    def set_capacities(self, caps):
        """Set generator capacities from a list."""
        num = 0
        for gen in self.generators:
            for (setter, min_cap, max_cap) in gen.setters:
                # keep parameters within bounds
                newval = max(min(caps[num], max_cap), min_cap)
                setter(newval)
                num += 1
        # Check every parameter has been set.
        assert num == len(caps), f'{num} != {len(caps)}'

    def __str__(self):
        """Make a human-readable representation of the context."""
        string = ""
        if self.regions != regions.All:
            string += f'Regions: {self.regions}\n'
        if self.verbose:
            string += 'Generators:' + '\n'
            for gen in self.generators:
                string += f'\t{gen}'
                summary = gen.summary(self)
                if summary is not None:
                    string += f'\n\t   {summary}\n'
                else:
                    string += '\n'
        string += f'Timesteps: {self.hours} h\n'
        total_demand = (self.total_demand() * ureg.MWh).to_compact()
        string += f'Demand energy: {total_demand}\n'
        surplus_energy = (self.surplus_energy() * ureg.MWh).to_compact()
        string += f'Unstored surplus energy: {surplus_energy}\n'
        if self.surplus_energy() > 0:
            spill_series = self.spill[self.spill.sum(axis=1) > 0]
            string += 'Timesteps with unused surplus energy: '
            string += f'{len(spill_series)}\n'

        if self.unserved.empty:
            string += 'No unserved energy'
        else:
            string += f'Unserved energy: {self.unserved_percent():.3f}%\n'
            if self.unserved_percent() > self.relstd * 1.001:
                string += 'WARNING: reliability standard exceeded\n'
            string += f'Unserved total hours: {len(self.unserved)}\n'

            # A subtle trick: generate a date range and then subtract
            # it from the timestamps of unserved events.  This will
            # produce a run of time deltas (for each consecutive hour,
            # the time delta between this timestamp and the
            # corresponding row from the range will be
            # constant). Group by the deltas.
            date_range = pd.date_range(self.unserved.index[0],
                                       periods=len(self.unserved.index),
                                       freq='H')
            deltas = self.unserved.groupby(self.unserved.index - date_range)
            unserved_events = [k for k, g in deltas]
            string += 'Number of unserved energy events: '
            string += f'{len(unserved_events)}\n'
            if not self.unserved.empty:
                umin = (self.unserved.min() * ureg.MW).to_compact()
                umax = (self.unserved.max() * ureg.MW).to_compact()
                string += f'Shortfalls (min, max): ({umin}, {umax})'
        return string

Methods

def set_capacities(self, caps)

Set generator capacities from a list.

Expand source code
def set_capacities(self, caps):
    """Set generator capacities from a list."""
    num = 0
    for gen in self.generators:
        for (setter, min_cap, max_cap) in gen.setters:
            # keep parameters within bounds
            newval = max(min(caps[num], max_cap), min_cap)
            setter(newval)
            num += 1
    # Check every parameter has been set.
    assert num == len(caps), f'{num} != {len(caps)}'
def surplus_energy(self)

Return total surplus energy.

Expand source code
def surplus_energy(self):
    """Return total surplus energy."""
    return self.spill.values.sum()
def timesteps(self)

Return the number of timesteps.

Expand source code
def timesteps(self):
    """Return the number of timesteps."""
    return len(self.demand)
def total_demand(self)

Return the total demand from the data frame.

Expand source code
def total_demand(self):
    """Return the total demand from the data frame."""
    return self.demand.values.sum()
def unserved_energy(self)

Return the total unserved energy.

Expand source code
def unserved_energy(self):
    """Return the total unserved energy."""
    return self.unserved.values.sum()
def unserved_percent(self)

Return the total unserved energy as a percentage of total demand.

Expand source code
def unserved_percent(self):
    """Return the total unserved energy as a percentage of total demand."""
    # We can't catch ZeroDivision because numpy emits a warning
    # (which we would rather not suppress).
    if self.total_demand() == 0:
        return np.nan
    return self.unserved_energy() / self.total_demand() * 100
def years(self)

Return the number of years from the number of simulation hours.

Expand source code
def years(self):
    """Return the number of years from the number of simulation hours."""
    return self.hours / (365 * 24)