Module nemo.context
Implementation of the Context class.
A simulation context encapsulates all simulation state ensuring that there is never any residual state left behind after a simulation run. It also allows multiple contexts to be compared after individual simulation runs.
Expand source code
# Copyright (C) 2011, 2012, 2014 Ben Elliston
# Copyright (C) 2014, 2015, 2016 The University of New South Wales
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
"""
Implementation of the Context class.
A simulation context encapsulates all simulation state ensuring that
there is never any residual state left behind after a simulation
run. It also allows multiple contexts to be compared after individual
simulation runs.
"""
import numpy as np
import pandas as pd
from nemo import configfile, costs, generators, polygons, regions
from nemo.nem import hourly_demand, hourly_regional_demand, startdate
from nemo.utils import ureg
class Context():
"""All simulation state is kept in a Context object."""
# pylint: disable=too-many-instance-attributes
def __init__(self):
"""Initialise a default context."""
self.verbose = False
self.regions = regions.All
self.startdate = startdate
# Number of timesteps is determined by the number of demand rows.
self.hours = len(hourly_regional_demand)
self.relstd = 0.002 # 0.002% unserved energy
self.generators = [generators.CCGT(polygons.WILDCARD, 20000),
generators.OCGT(polygons.WILDCARD, 20000)]
self.storages = None
self.demand = hourly_demand.copy()
self.spill = pd.DataFrame()
self.generation = pd.DataFrame()
self.unserved = pd.DataFrame()
# System non-synchronous penetration limit
self.nsp_limit = float(configfile.get('limits', 'nonsync-penetration'))
self.costs = costs.NullCosts()
def years(self):
"""Return the number of years from the number of simulation hours."""
return self.hours / (365 * 24)
def timesteps(self):
"""Return the number of timesteps."""
return len(self.demand)
def total_demand(self):
"""Return the total demand from the data frame."""
return self.demand.values.sum()
def unserved_energy(self):
"""Return the total unserved energy."""
return self.unserved.values.sum()
def surplus_energy(self):
"""Return total surplus energy."""
return self.spill.values.sum()
def unserved_percent(self):
"""Return the total unserved energy as a percentage of total demand."""
# We can't catch ZeroDivision because numpy emits a warning
# (which we would rather not suppress).
if self.total_demand() == 0:
return np.nan
return self.unserved_energy() / self.total_demand() * 100
def set_capacities(self, caps):
"""Set generator capacities from a list."""
num = 0
for gen in self.generators:
for (setter, min_cap, max_cap) in gen.setters:
# keep parameters within bounds
newval = max(min(caps[num], max_cap), min_cap)
setter(newval)
num += 1
# Check every parameter has been set.
assert num == len(caps), f'{num} != {len(caps)}'
def __str__(self):
"""Make a human-readable representation of the context."""
string = ""
if self.regions != regions.All:
string += f'Regions: {self.regions}\n'
if self.verbose:
string += 'Generators:' + '\n'
for gen in self.generators:
string += f'\t{gen}'
summary = gen.summary(self)
if summary is not None:
string += f'\n\t {summary}\n'
else:
string += '\n'
string += f'Timesteps: {self.hours} h\n'
total_demand = (self.total_demand() * ureg.MWh).to_compact()
string += f'Demand energy: {total_demand}\n'
surplus_energy = (self.surplus_energy() * ureg.MWh).to_compact()
string += f'Unstored surplus energy: {surplus_energy}\n'
if self.surplus_energy() > 0:
spill_series = self.spill[self.spill.sum(axis=1) > 0]
string += 'Timesteps with unused surplus energy: '
string += f'{len(spill_series)}\n'
if self.unserved.empty:
string += 'No unserved energy'
else:
string += f'Unserved energy: {self.unserved_percent():.3f}%\n'
if self.unserved_percent() > self.relstd * 1.001:
string += 'WARNING: reliability standard exceeded\n'
string += f'Unserved total hours: {len(self.unserved)}\n'
# A subtle trick: generate a date range and then subtract
# it from the timestamps of unserved events. This will
# produce a run of time deltas (for each consecutive hour,
# the time delta between this timestamp and the
# corresponding row from the range will be
# constant). Group by the deltas.
date_range = pd.date_range(self.unserved.index[0],
periods=len(self.unserved.index),
freq='H')
deltas = self.unserved.groupby(self.unserved.index - date_range)
unserved_events = [k for k, g in deltas]
string += 'Number of unserved energy events: '
string += f'{len(unserved_events)}\n'
if not self.unserved.empty:
umin = (self.unserved.min() * ureg.MW).to_compact()
umax = (self.unserved.max() * ureg.MW).to_compact()
string += f'Shortfalls (min, max): ({umin}, {umax})'
return string
Classes
class Context
-
All simulation state is kept in a Context object.
Initialise a default context.
Expand source code
class Context(): """All simulation state is kept in a Context object.""" # pylint: disable=too-many-instance-attributes def __init__(self): """Initialise a default context.""" self.verbose = False self.regions = regions.All self.startdate = startdate # Number of timesteps is determined by the number of demand rows. self.hours = len(hourly_regional_demand) self.relstd = 0.002 # 0.002% unserved energy self.generators = [generators.CCGT(polygons.WILDCARD, 20000), generators.OCGT(polygons.WILDCARD, 20000)] self.storages = None self.demand = hourly_demand.copy() self.spill = pd.DataFrame() self.generation = pd.DataFrame() self.unserved = pd.DataFrame() # System non-synchronous penetration limit self.nsp_limit = float(configfile.get('limits', 'nonsync-penetration')) self.costs = costs.NullCosts() def years(self): """Return the number of years from the number of simulation hours.""" return self.hours / (365 * 24) def timesteps(self): """Return the number of timesteps.""" return len(self.demand) def total_demand(self): """Return the total demand from the data frame.""" return self.demand.values.sum() def unserved_energy(self): """Return the total unserved energy.""" return self.unserved.values.sum() def surplus_energy(self): """Return total surplus energy.""" return self.spill.values.sum() def unserved_percent(self): """Return the total unserved energy as a percentage of total demand.""" # We can't catch ZeroDivision because numpy emits a warning # (which we would rather not suppress). if self.total_demand() == 0: return np.nan return self.unserved_energy() / self.total_demand() * 100 def set_capacities(self, caps): """Set generator capacities from a list.""" num = 0 for gen in self.generators: for (setter, min_cap, max_cap) in gen.setters: # keep parameters within bounds newval = max(min(caps[num], max_cap), min_cap) setter(newval) num += 1 # Check every parameter has been set. assert num == len(caps), f'{num} != {len(caps)}' def __str__(self): """Make a human-readable representation of the context.""" string = "" if self.regions != regions.All: string += f'Regions: {self.regions}\n' if self.verbose: string += 'Generators:' + '\n' for gen in self.generators: string += f'\t{gen}' summary = gen.summary(self) if summary is not None: string += f'\n\t {summary}\n' else: string += '\n' string += f'Timesteps: {self.hours} h\n' total_demand = (self.total_demand() * ureg.MWh).to_compact() string += f'Demand energy: {total_demand}\n' surplus_energy = (self.surplus_energy() * ureg.MWh).to_compact() string += f'Unstored surplus energy: {surplus_energy}\n' if self.surplus_energy() > 0: spill_series = self.spill[self.spill.sum(axis=1) > 0] string += 'Timesteps with unused surplus energy: ' string += f'{len(spill_series)}\n' if self.unserved.empty: string += 'No unserved energy' else: string += f'Unserved energy: {self.unserved_percent():.3f}%\n' if self.unserved_percent() > self.relstd * 1.001: string += 'WARNING: reliability standard exceeded\n' string += f'Unserved total hours: {len(self.unserved)}\n' # A subtle trick: generate a date range and then subtract # it from the timestamps of unserved events. This will # produce a run of time deltas (for each consecutive hour, # the time delta between this timestamp and the # corresponding row from the range will be # constant). Group by the deltas. date_range = pd.date_range(self.unserved.index[0], periods=len(self.unserved.index), freq='H') deltas = self.unserved.groupby(self.unserved.index - date_range) unserved_events = [k for k, g in deltas] string += 'Number of unserved energy events: ' string += f'{len(unserved_events)}\n' if not self.unserved.empty: umin = (self.unserved.min() * ureg.MW).to_compact() umax = (self.unserved.max() * ureg.MW).to_compact() string += f'Shortfalls (min, max): ({umin}, {umax})' return string
Methods
def set_capacities(self, caps)
-
Set generator capacities from a list.
Expand source code
def set_capacities(self, caps): """Set generator capacities from a list.""" num = 0 for gen in self.generators: for (setter, min_cap, max_cap) in gen.setters: # keep parameters within bounds newval = max(min(caps[num], max_cap), min_cap) setter(newval) num += 1 # Check every parameter has been set. assert num == len(caps), f'{num} != {len(caps)}'
def surplus_energy(self)
-
Return total surplus energy.
Expand source code
def surplus_energy(self): """Return total surplus energy.""" return self.spill.values.sum()
def timesteps(self)
-
Return the number of timesteps.
Expand source code
def timesteps(self): """Return the number of timesteps.""" return len(self.demand)
def total_demand(self)
-
Return the total demand from the data frame.
Expand source code
def total_demand(self): """Return the total demand from the data frame.""" return self.demand.values.sum()
def unserved_energy(self)
-
Return the total unserved energy.
Expand source code
def unserved_energy(self): """Return the total unserved energy.""" return self.unserved.values.sum()
def unserved_percent(self)
-
Return the total unserved energy as a percentage of total demand.
Expand source code
def unserved_percent(self): """Return the total unserved energy as a percentage of total demand.""" # We can't catch ZeroDivision because numpy emits a warning # (which we would rather not suppress). if self.total_demand() == 0: return np.nan return self.unserved_energy() / self.total_demand() * 100
def years(self)
-
Return the number of years from the number of simulation hours.
Expand source code
def years(self): """Return the number of years from the number of simulation hours.""" return self.hours / (365 * 24)